The important role of 18480-53-0

With the complex challenges of chemical substances, we look forward to future research findings about 3,4-Dichloroisothiazole-5-carboxylic acid

Name is 3,4-Dichloroisothiazole-5-carboxylic acid, as a common heterocyclic compound, it belongs to isothiazole compound, and cas is 18480-53-0, its synthesis route is as follows.,18480-53-0

3,4-Dichloroisothiazol-5-ylcarboxylic acid (400 mg, 2.02 mmol) was dissolved in abs. dichloromethane (20 ml), and triethylamine (0.85 ml, 6.06 mmol) was added. After stirring at room temperature for 5 minutes, pyrrolidine-i-amine (209 mg, 2.42 mmol) and 2,4,6-tripropyl-1,3, 5,2,4,6-trioxatriphosphorinane 2,4,6-trioxide (1.80 ml, 3.03 mmol, 50percent solution in tetrahydrofuran) were added. The resulting reaction mixture was stirred at room temperature for a further 30 minutes, and then water, sat. sodium hydrogencarbonate solution and dichloromethane were added. The aqueous phase was repeatedly extracted vigorously with dichloromethane, and the combined organic phases were then dried over magnesium sulfate, filtered and concentrated. Final purification of the resulting crude product by colunm chromatography gave 3,4-dichloro-N-(pyr- rolidin-i-yl)-i,2-thiazole-5-carboxamide in the form of a colorless solid (520 mg, 92percent of theory). ?H-NMR (400 MHz, CDC13 oe, ppm) 3.38-3.28 (m, 2H), 2.73-2.64 (m, 2H), 2.03-1.98 (m, 4H). 3,4-Dichloro-N-(pyrrolidin- 1 -yl)-i ,2- thiazole-5-carboxamide (120 mg, 0.45 mmol) was dissolved in abs. tetrahydroffiran (5 ml) under argon, and sodium hydride (40 mg, 1.99 mmol, 60percent purity) was added at room temperature. Stirring at room temperature for 30 minutes was followed by the addition of picolyl chloride (HC1 salt, 74 mg, 0.45 mmol), and the resulting reaction mixture was stirred under reflux conditions for approx. 3 hours. After cooling to room temperature, sat. sodium hydrogencarbonate solution, water and dichloromethane were added. The aqueous phase was repeatedly extracted vigorously with dichloromethane, and the combined organic phases were then dried over magnesium sulfate, filtered and concentrated. Final purification of the resulting crude product by colunm chromatography gave 3,4-dichloro-N-(pyridin-2-yl- methyl)-N-(pyrrolidin- 1 -yl)-i ,2-thiazole-5-carboxamide in the form of a colorless solid (112 mg, 69percent of theory). ?H-NMR (400 MHz, CDC13 oe, ppm) 8.62 (m, 1H), 7.71-7.67 (m, 1H), 7.53 (m, 1H), 7.33 (m, 1H), 5.15 (s, 2H), 4.18-4.13 (m, 2H), 3.71-3.66 (m, 2H), 2.30-2.24 (m, 2H), 2.13-2.08 (m, 2H).

With the complex challenges of chemical substances, we look forward to future research findings about 3,4-Dichloroisothiazole-5-carboxylic acid

Reference£º
Patent; Bayer CropScience Aktiengesellschaft; FRACKENPOHL, Jens; BOJACK, Guido; BRUENJES, Marco; HELMKE, Hendrik; LEHR, Stefan; BRUECHNER, Peter; TIEBES, Joerg; MOSRIN, Marc; DITTGEN, Jan; SCHMUTZLER, Dirk; DESBORDES, Philippe; (92 pag.)US2018/206498; (2018); A1;,
Isothiazole – Wikipedia
Isothiazole – ScienceDirect.com